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Effects of internal fluctuations on the spreading of Hantavirus

C. Escuderd,J. Buceta:®* F. J. de la Rubid,and Katja Lindenbery
1Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, C/Senda del Rey 9, 28040 Madrid, Spain
Department of Chemistry and Biochemistry, and Institute for Nonlinear Science, University of California San Diego, 9500 Gilman Drive,
La Jolla, California 92093-0340, USA
(Received 13 July 2004; published 16 December 2004

We study the spread of Hantavirus over a host population of deer mice using a population dynamics model.
We show that taking into account the internal fluctuations in the mouse population due to its discrete character
strongly alters the behavior of the system. In addition to the familiar transition present in the deterministic
model, the inclusion of internal fluctuations leads to the emergence of an additional deterministically hidden
transition. We determine parameter values that lead to maximal propagation of the disease and discuss some
implications for disease prevention policies.
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I. INTRODUCTION M, MM
F:_Cl\/h_ +a(M_M|)M|, (1b)

Hantavirus epidemics have been studied extensively in
the biological literature following a number of outbreaks in whereM stands for the total number of mice, for the total
the North American Southwest in the 19903. The host of number of infected mice is the birth rate coefficient the
this infection is the deer mouse, the most numerous mammaleath rate coefficieng the infection rate coefficient, arid
in North America. The virus is transmitted among deer micethe carrying capacity that characterizes the resources avail-
via biting and to humans via contact with their excreta. able to the mice and the resulting competition. The steady-
Recently, the Hantavirus has been receiving increasing astate value of the total mouse populatiotMs-K(b-c). One
tention in the physical and mathematical literature. A basiccan see that there is a transcritical bifurcatiofatK, with
population dynamics model was introduced and solved by
Abramson and Kenkrf2], who also analyzed the spatiotem- = L
poral patterns of the infection. Monte Carlo simulations were [a(b-0)]
pgrformed by Aguirreet al.[3], and propagating fron.ts of the WhenK <K, the stable point
disease were analyzed by Abramsamnal. [4]. A review of
the model can be found if6]. The relation between out- M=K(b-c), M;=0 (3)
breaks of the disease and seasonal changes was explored b . . . .
Bucetaet al. [6]. This collection has shed Iigght on the ml?echa- hz%’s ZEro mfectg_d mice, while .Wheﬁ> Ke .the. stable point
nisms of propagation of the disease among mice and Wi"ncludes a positive number of infected mice:
hopefully help design more effective prevention policies. b
In this paper we go a step further and analyze the effects M=K(-c), M =K(b-c)--. (4)
of theinternal fluctuations on the propagation of the disease, a
first studied by Aguirreet al. [3] via Monte Carlo simulations The two rate equations can be thought of as describing two
and here studied analytically. These fluctuations are inevifreactants”"M and M, undergoing four types of “reactions”
table because the mouse population is discrete and finite, andth rate coefficientsa, b, ¢, andK™, respectively. One of
they may have profound consequences, as reported by Esaltese conserves the total number of mitiee infection,
deroet al. [7] using a generic population dynamics model. while the other threghirth, death, competitiondo not. Note
The basic model introduced ifb] incorporates birth, that Eqg.(1a) depends only on the latter three, whose effect
death, competition for resources, and infection. The modebn the total population can thus be studied separately from
reads the issue of infection. Infected pregnant mice produce Hanta
antibodies that keep their foetus free from the infection. Con-
sequently, there is no birth term in Ed.b). Also, there is no
dMm M2 recovery term in the model because mice become chronically
pr (b-o)M - i (18 infected with the virus.
The analysis of the internal fluctuations in the mouse
population due to the discrete and finite sizes of the popula-
tions requires generalization of the mean-field model to a
*Present address: Parc Cientific de Barcelona, Centre de Recerstochastic description—e.g., a master equation. In this paper
en Quimica TeoricaCeRQT), Campus Diagonal-Universitat de we start with such a master equation, but at the very outset
Barcelona, Edifici Modular, C/ Josep Samitier 1-5, 08028 Barcewe outline some reasonable approximations that lead to a
lona, Spain. mathematically tractable model.
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A full master equation description of the problem would dP(n,t)

involve P(n,ny,t), the probability distribution function for = b[(n-1)P(n-1,t) —nP(n,t)] +c[(n+1)

there to ben total mice andn, infected mice at time. We

find this full master equation to be analytically intractable. XP(n+1,t) =nP(n,t)]+ K [(n+ )nP(n+ 1,t)
We therefore break the problem up into two parts as follows. —n(n-1P(n,H]. (8)

First, we formulate a master equation for the reduced prob-

ability distribution functionP(n,t) associated only with the This equation is not tractable as it stands, but it is amenable
mean-field equatiola). This master equatiofwhich is not  to a system size expansion as introduced by van Kampen
influenced by the infectionis tractable, as we shall see. We [8,9]. A system size expansion is appropriate when the sys-
then argue that the fluctuations in thrdectedmouse popu- tem is “large” or, as in our case, the species under consider-
lation arise from two sources. One is the dependendd @am  ation numerous. It is important to note that this implies that
Eq. (1b) and the fact that this total population fluctuates.the steady-state solution favi given in Egs.(3) and (4),
Having solved the master equation associated Mithwe are  which we expect the mean of the stochastic solution to re-
able to incorporate these fluctuations into the stochastic dgsroduce, must therefore be “large”; that i§,must be pro-
scription of infected mice. We will show that the effects of portional to the system siz&. The ratio

these fluctuations may be profound, especially when the

mean mouse population is not too large, and may lead to d Q 9)

unexpected consequences. These are the new features that K

we are particularly interested in exploring. The other arises

from the additional inherent fluctuations in the number ofmust be essentially independent of the system size for this
infected mice due to the fact that this population is also finiteanalysis to be appropriate. To implement a system size ex-
and discrete. These are especially important when the nunfansion we thus write the third coefficient on the right of Eq.
ber of infected mice is small, but we do not include them(8) asK™*=d/Q.

explicitly in our equations, again because of tractability ~The implemention of a system size expansion requires
problems. This is not as serious as one might think becausgeveral steps. First, althoughis a discrete variable, we can
we do know their consequences, which can also be profountepresent the discrete changesnivia an infinite series of
(as we have shown ifi7]): these fluctuations may cause a derivatives in whicm is treated as a continuous variable:
small population of infected mice to disappear entirely. In
other words, if one is in a regime where the population of
infected mice is small in the absence of these fluctuations,
consideration of these fluctuations might eliminate this popu-
lation entirely. Thus, results obtained without considerationThijs exact relation allows us to rewrite the master equation
of these fluctuations can be thought of as an upper bound qi) as

the number of infected mice. At worst one would be overes-

“ (1)) gl
f(nJ_rl):exp(ta—i)f(n):g(%%f(n). (10)

timating the presence of infected mice in the regime where dP(n,t) * (-1} g 1 gl
the number of infected mice is in any case small or zero. at - bz U i TC i nP(n,t)
In Sec. Il we present the stochastic model for the total =1 =1
mouse population. Section Il deals with the stochastic d2 1 g
model for the infected mouse population, and in Sec. IV we + 52 T—J.n(n - 1)P(n,t). (11
discuss the results of the analysis. We summarize our con- j=11"n

clusions in Sec. V. - .
Next, one makes the heuristic assumption that one can per-

form the change of variables
IIl. STOCHASTIC MODEL FOR TOTAL

MOUSE POPULATION n— Q¢(t) + OY?%z, (12

The master equation for the total mouse population is ea
ily written down if we think explicitly of the “reactions”
contributing to Eq(1a). They are births,

b

%/'vhereqS(t) is the mean value of the mouse population den-
sity andz represents the fluctuations around the mean. We
then define the probability distribution

—M+
deaths, S ” pzt) = P((;/;) (13
M—C> @ 6) Applying the standard chain rule
and competition for resources, (M) _ <5P(Z,t)> . (f?P(Z,t)) (19_2) (14
L a ), at/, oz J\at/,
M+M=M. @) together with the relation which follows from the change of
The master equation describing these processes is variables relation,
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oz LAl lll. STOCHASTIC MODEL FOR INFECTED
o) ST (195 MOUSE POPULATION
n

We now return to the infected mouse population, whose

we can rewrite the master equation in terms of the new Lyolution is described in mean field by E@b). While we

distribution: are ignoring the internal fluctuations that arise from the fact
dp(z,t) 129¢ dp(z,1) that this population is finite and discretas discussed ear-

o -Q dat oz lier), we do wish to provide a stochastic description that
. incorporates the effects of the fluctuations in the total mouse

bEQ D! 1)) 9 KA 29_1/21 J) populationn(t). Our results of the previous section indicate

iv gzl C,-:l il oz} that we can think of(t) as a stochastic variable,
1 [9 n(t) =K(b-c) + on(t) =M + on(t), (21)
1/2 el 2=
X(Qp+ QT 2)p(z 1) + 91219 iV oz a7l where the fluctuationgn(t) have zero mean and are gener-

ated from the Ornstein-Uhlenbeck stochastic differential
X(Qp+0Y%2)(Qp+ QOY%z-1)p(zt). (16 equation

This equation, known as the Kramers-Moyal expansion, is dsn R

still exact. Truncation of this series must be handled care- ot (b—c)én+ v2Kb(b - C)&(t). (22)

fully [10]. Here we implement the well-known truncation

scheme based on the system size expansion of van Kampefere£(t) is zero-centered-correlated Gaussian noise of unit

(8,9 intensity, (&(t)&(t"))=8(t—t’). In the stationary state the cor-
In the large-system-size limit there are three divergentelation function of the fluctuations is then

terms in Eq(16) proportional taQ*29p/ 9z that must cancel;

that is, we must require that (on(t)on(t’)) = Kbe ®-olt-t'l, (23

de ) We include these fluctuations in Ed.b) by replacingn with
o (b-c)¢p-dg”. (17 K(b-c)+on. The resulting stochastic differential equation

reads
Note that this exactly corresponds to Etja); that is, ¢(t) is d
itﬂdeertlj the mean population density. In the steady state we d_r:l =[aK(b-c)-b]n, - an|2+ ; (24)
us have vb—-
b-c where{(t) is an Orstein-Uhlenbeck process with zero mean
b= o (18)  and correlation function
(LD =Kb(b - c)e oI, (25)

Using this result in the surviving terms in E¢L6) in the

large{} limit then leads to the Fokker-Planck equation This is our basic stochastic equation for the infected popula-
2 tion. The intensity of these fluctuations is determined by the
9P _ (b- C)@ + M_p (199  Width of the total mouse population distribution. The corre-
ot Jz d 2 lation time 7.=(b-c)™! is a measure of the time it takes a
total population diminished by fluctuations to recover.
Because/(t) is a “colored noise” with finite correlation
time, the exact solution of the proble(®4) and(25) is not
known. In particular, there is no exact Fokker-Planck equa-
1/2 o2 tion for the probability distribution functio®(n,,t) that the
p(2) = (ﬁ) Cs (20 number of infected mice ig, at timet. A number of approxi-
mate Fokker-Planck equation schemes can be found in the
a Gaussian distribution centered at zero and of width propotiterature[12], some of which have the virtue of becoming
tional tob/d. This in turn implies that in the steady state the €xact in both the limits,— 0 and7,— . Since these theo-
total numbern of mice also has a Gaussian distribution ries lead to a qualitatively similar panorama of possibilities,
whose mean is the mean number of mice predicted by thwe apply the simplest of these theories, developed by Fox
deterministic model and whose width is proportionaltth. ~ [13,14. The resulting effective Fokker-Planck equation is
The internal fluctuations thus do not alter the behavior of J
the total number of mice in any dramatic way. They simply —P(n,,t) == —G(n))P(n,,1)
lead to a Gaussian distribution around the deterministic mean A n
whose width increases with increasing birth rate and increas-
ing carrying capacity. However, as we will see in the follow- —g(n,)—g(n,)D(n,)P(n,,t) (26)
ing sections, the consequences of this distribution on the
number of infected mice can be unexpected. where

The steady-state solution of E@{.9) for the probability den-
sity of the stochastic variablewith natural boundary condi-
tions at #o is given by

061907-3



ESCUDEROet al. PHYSICAL REVIEW E 70, 061907(2004

G(n) =[aK(b-c) - b]n, — ar?, (27) 150

_k-1 L
g(n) = a,i n, (28) a

\“’b -C K

and T
_ Kb(b - C) 0

D) = b-c+an’ (29 °

ISO M T T T T T AN T

The stationary solution of this equation is

_ oK 100
a (_l+(b OK[a(b c)ZK b]) [\
P(n)=N 1+ﬁ:nI n b(ak - 1) |

Ka?n? aK[aK(b-c) - 2b+c]n, so-
Xex - 2 + 2 i
2b(aK-1) b(aK-1)

9

!
|
!
!
‘L

=
ﬂ‘_--_---_-------

(30) - R —

n 1 " " "
0 0.05 0.1 a 0.15 0.2 0.25

whereN is the normalization constant. In the next section we
analyze and comment on the interesting features of this so- FIG. 1. Phase diagrams for the infected mouse population in
lution. (K,a) space. The solid curves in both panels are the cukzek..
The dashed curves ai¢=K_. The dash-dotted curves are It
=K . Upper panel:b=0.8,c=0.5. Lower panel:b=0.5, c=0.2.
IV. RESULTS FOR INFECTED MOUSE POPULATION The values ofa; are 0.12 and 0.19 in the upper and lower panels,
respectively. The insets are schematics of the probability distribu-

The first point to note is that the mean number of mice, tions in each region.

" negative(—-a). We can therefore bound the solutions from
M, =(n,) :f dnn,P(n)), (31) e_lbove by simply dropping the quadrati.c_term. The resulting
0 linear equation can be integrated explicitly. When the coef-
ficient of the linear term is negative—which it is if and only
if K<K it follows directly that the solution decays expo-
is exactly as predicted in the mean-field theory; cf. E§$. nentially to zero as— . Since the solutiom(t) is bounded
and (4). However, here there are distributions of infectedahove by zero as— o for any realization of the fluctuations,
mouse populations underlying this mean, and our interest lieg follows that the probability distribution goes to &func-
in the different shapes of these distributions in different pation atn,=0. The insets at the lower left of each panel in Fig.
rameter regimes and in the additional information beyond the are a schematic of this behavior. Whigncrosses the .
mean contained in these distributions. The distributions, decurve there is still a divergence at=0, but the probability
scribed in detail below, are sketched in Fig. 1, where wegjstribution becomes integrable and hence normalizable. The
present the phase diagrams of the systeitKira) space for  most probable value for the infected population is still zero,
fixed b andc. The values ofb and ¢ have been chosen to but nonzero values now have a finite probability and the
match those used in earlier Monte Carlo simulatidB$  mean value of infected mice is positive. The lower right-
and/or to make most evident the different behaviors that ar@and insets in both panels are sketches of this behavior
observed in the system. which persists as a function of increasidaintil the carrying
Various phase boundary lines are shown in Fig. 1. ThQ;apacity reaches a second critical value:
solid curves in both panels are the cunkesK.. WhenK
<K, the probability distribution(30) cannot be normalized - 2b
because it has a nonintegrable singularitya0. Since this ° b[2a-(b-c)]+ Vb(b-c)[b?-c(4a+b)]’
is a fixed point of the dynamics, the probability distribution
must be interpreted as&function centered at zef®]. This  WhenK crosses the curvK=KZ the divergence in the dis-
can be shown directly from the stochastic differential equatribution (30) disappears and the most probable number of
tion (24). The coefficient of the quadratic ternﬁ is always infected mice moves to finite values. The curve has a diver-

(32

061907-4



EFFECTS OF INTERNAL FLUCTUATIONS ON THE. PHYSICAL REVIEW E 70, 061907(2004

gent asymptote aa=0, but its behavior as a function ef
otherwise depends on the other parameteits<ifc, thenK;

also diverges aa=a,= (b—c)?/b. This is the situation in the
upper panel of Fig. 1. On the other handh it 2c, thenK; is
complex when a>a.=b(b-c)/4c, thus producing the
abrupt vertical boundary seen in the lower panel. This second
case corresponds to the parameterand c in the Monte
Carlo simulations of Aguirreet al. [3]. In either case, within
the region enclosed by thléz curve (dashed curve in the
figure) the probability distribution goes to zero at the origin
and has a maximum at a finite value mf as shown in the
upper left sketches in both panels. Both the average number
of infected mice and the most probable number of infected
mice are now positive. Note that we have labeled the right-
most value ofa on the dashed curve ag, whether it is an
asymptote as in the upper panel or the abrupt ending point of
the curve as in the lower panel.

There is an additional transition curve, more subtle than
the other two, drawn as the dash-dotted curves in both panels
in Fig. 1. We denote this transition curve $ . On the
upper right in both panels is the sketch of the probability
distribution in this region. Here the probability distribution
diverges at zero, but another maximum develops at a finite
number of infected mice. This maximum is found as the
finite positive root of the derivative conditiodP(n;)/dn,
=0. The dash-dotted curves in the phase diagrams indicate FIG. 2. Ratio of the dispersion to the mean number of infected
the location of this transition. mice forb=0.5 andc=0.2. Upper panel=10"72<a,. Lower panel:

A number of points about these results deserve speci@~ 2
highlighting. The particular behavior just described for large
K and a (divergence at the Origin and also another maxi-mean for a value o> ac. The fluctuations are now decid-
mum) is entirely due to the fact that the internal fluctuationsedly smaller, even though we are in a regime of far fewer
are colored The correlation time of these fluctuations(ls  infected mice on averag@s indicated by the values &. It
-c)™1, and the color has arisen naturally and not as an addivould be interesting to see whether the size of the jump in
tional assumption. It is interesting to note that the Montethe infected mouse population at the transition would de-
Carlo simulation results of Aguirret al. [3] exhibit a num- ~ Créase in a Monte Carlo simulation wié>a..
ber of features that might be related to the results that we Finally, we comment on three last points. One concerns
have derived here. One is that in their simulations the numthe validity of the system size expansion. The total mean
ber of infected mice as a function & jumps discontinu- number of mice in the population K(b-c), and the system
ously from zero to a finite numbewhereas the mean-field Size expansion is valid if this number is in some sense suf-
value does ngt They note that a justification for this result ficiently large(the expansion is valid if the neglected terms
lies in the discreteness of the number of mice and the exisare small. While we have not explicitly checked the validity,
tence of fluctuations. In our continuous language, the behayh most of the regimes under discussion the number of in-
ior they observe might reflect the abrupt transition betweerected mice is an order of magnitude greater than unity. Our
the &-function distribution(or the one with a maximum at the s_eco_nd point is_to stress t_hat the fluc_:tuations that Iea_d to the
origin) to the one with a zero probability density of no in- dlstr|b_u_t|ons of infected mice are entirely due to the discrete
fected mice aK increases. Their simulations use the value@nd finite character of theotal number of mice. And yet,
a= 10‘2 To support this argument further, we have p|otted inWh"e the ratio of the width of the dIStI’IbLMOf total mice
Fig. 2 the ratio of the dispersion to the mean for these pat0 the mean number of total micay/M=/(b/K)/(b-c), is
rameter values. The dispersion is of the order of the meagmall in most of the phase diagram, the width of the distri-
and, near the transition valu€,, the ratio actually diverges. bution induced in the number of infected mice is relatively
The Monte Carlo behavior is also influenced by the internalarge[of O(=1)] in most of the diagram. The third point is a
fluctuations in the infected mice population that we have noteminder that this theory has not included the fluctuations
taken into account in our model. We have elsewhere pursuegaused directly by the fact that the number of infected mice
the argument that a possible criterion for the likely extinctionis discrete and finite. These fluctuations would further
of a species is precisely that the dispersion be of the samieroaden the distributions.
size as the meafY]. The substantial width of the distribution
might make itself apparent in a simulation through the high
likelihood of absence of the infected species. For compari- We have considered the effect of internal fluctuations in
son, we have also plotted the ratio of the dispersion to théhe total mouse population on the number of infected mice.

V. CONCLUSIONS
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Although these fluctuations cause no dramatic effects in thaormally low. During the rainy season the infection rate pa-
total mouse population, yielding a Gaussian distribution oframetera is low, a combination that according to Fig. 1 leads
relatively small variance for a sufficiently large population, to a state in which there are no infected mice. During the dry
they have a rather strong effect on the distribution of infectedseasora is high. The illness appears gradually and can per-
mice. Because the fluctuations are not “direct” but insteagist even for low values dk. This may in part explain why
appear indirectly through the coupling between infected andhe maximum number of infected mice tends to occur at the
uninfected mice, the fluctuations necessarily and naturallgnd of the dry season. During the El Nifio the high value of
appear as colored in the equations that describe the evolutidt and low value ofa can lead to the state where the prob-
of infected mice. This leads to a variety of effects beyondability distribution has no divergence at the origin—that is,
those that would be caused by simple white ndise12. to a state of epidemic outbreak. We might thus conjecture
The mean infected population in this model is exactly thathat the outbreak of Hantavirus observed during the El Nifio
predicted in mean field. However, while the mean-fieldis produced by a different mechanigabrupt transitiopthan
model predicts one critical value of the carrying capacitythe usual infection cycle during the dry season, which ap-
parametel(K.) such that below this value there is no infec- pears through a gradual transition.
tion and above this value there is, the stochastic model leads These features may be useful in the design of more effec-
to three critical valuegK, K;, and KZ*). The first, which  tive prevention policies. For instance, an increase in the ef-
occurs at the same critical value as that of the deterministifective annihilation rate of the miady either increasing the
model, here corresponds to a transition between a state witteath rate or decreasing the birth rate or battight help
no infected mice to an intermediate state in which the mosbecause it increases the relative size of the region in param-
probable state is still one with no infected mice but with aeter space in which the infected mouse population distribu-
finite probability of infection. The second describes a transition has a divergence at the origjthe state of no infected
tion between this intermediate state and the outbreak statejice). The most effective strategy for the control of Hantavi-
where the probability distribution that there is no infection rus outbreaks is the reduction of the carrying capakityo
goes to zero. The intermediate stéke. < K<K;) displays as to cross from one regime to another with a higher prob-
different behaviors depending on the parameter values. Iability of no infected mice.
particular, in some parameter ranges the intermediate state
has very few infected mice. We argued that the inclusion of ACKNOWLEDGMENTS
the internal fluctuations in the infected mouse population C.E. is grateful to the Department of Chemistry and Bio-
(which was not considered due to analytic difficuljiesuld  chemistry of the University of California, San Diego for its
probably lead to extinction of this small number of infected hospitality. J.B. wishes to acknowledge support by the La
mice. This then means that the effective transition betweedolla Interfaces in Science Interdisciplinary Program funded
nonepidemic and epidemic states may occu€.atather than  through the generosity of the Burroughs Wellcome Fund.
at K.. We also identified another transition cur\}é:, be-  This work has been partially supported by the Engineering
yond which the probability diverges at zero but where an-Research Program of the Office of Basic Energy Sciences at
other maximum develops at a finite number of infected micethe U.S. Department of Energy under Grant No. DE-FG03-
It is interesting to consider these results, at least qualita86ER13606, by the Ministerio de Educacién y Cultura
tively, in the context of actual outbreaks of Hantavifeee (Spain through Grant No. AP2001-2598, and by the Minis-
[6] and references thereinin the Four Corners desert region terio de Ciencia y Tecnologia(Spair), Project No.
of the North American Southwest, the carrying capakitis BFM2001-0291.

[1] J. N. Mills, T. L. Yales, T. G. Ksiazek, C. J. Peters, and J. E. Phys. Rev. E66, 041908(2002.
Childs, Emerg. Infect. Dis5, 95(1999; D. M. Engelthaler, D. [4] G. Abramson, V. M. Kenkre, T. L. Yates, and R. Parmenter,
G. Mosley, J. E. Cheek, C. E. Levy, K. K. Komatsu, P. Ettes- Bull. Math. Biol. 65, 519(2003.
tad, T. Davis, D. T. Tanda, L. Miller, J. W. Frampton, R. Por- [5] V. M. Kenkre, inModern Challenges in Statistical Mechanics:
ter, and R. T. Bryanjbid. 5, 87 (1999; J. N. Mills, T. G. Patterns, Noise, and the Interplay of Nonlinearity and Com-
Ksiazek, C. J. Peters, and J. E. Childsd. 5, 135(1999; A. plexity, edited by V. M. Kenkre and K. Lindenberg, AIP Conf.
J. Kuenzi, M. L. Morrison, D. E. Swann, P. C. Hardy, and G. Proc. No. 658 AlP, Melville, NY, 2003).
T. Downard,ibid. 5, 113(1999; K. D. Abbott, T. G. Ksiazek, [6] J. Buceta, C. Escudero, F. J. de la Rubia, and K. Lindenberg,

and J. N. Mills, ibid. 5, 102 (1999; C. H. Calisher, W. Phys. Rev. E69, 021906(2004).
Sweeney, J. N. Mills, and B. J. Beaiipid. 5, 126 (1999; B. [7] C. Escudero, J. Buceta, F. J. de la Rubia, and K. Lindenberg,
Hjelle and G. E. Glass, J. Infect. Di481, 1569(2000; J. W. Phys. Rev. E69, 021908(2004).
Hooper, T. Larsen, D. M. Custer, and C. S. Schmaljohm, [8] N. G. van Kampen,Stochastic Processes in Physics and
Virology 289 6 (200J). Chemistry(North-Holland, Amsterdam, 1981

[2] G. Abramson and V. M. Kenkre, Phys. Rev. &, 011912 [9] C. W. Gardiner,Handbook of Stochastic MethodSpringer-
(2002. Verlag, Berlin, 1996

[3] M. A. Aguirre, G. Abramson, A. R. Bishop, and V. M. Kenkre, [10] R. F. Pawula, Phys. Re\l62 186(1967); C. R. Doering, P. S.

061907-6



EFFECTS OF INTERNAL FLUCTUATIONS ON THE. PHYSICAL REVIEW E 70, 061907(2004

Hagan, and P. Rosenau, Phys. Rev38, 985(198%; I. Op- (Springer-Verlag, Berlin, 1984

penheim, K. E. Shuler, and G. H. Weisstochastic Processes [12] K. Lindenberg, B. J. West, and G. P. Tsironis, Rev. Solid State
in Chemical Physics: The Master EquatigdIT Press, Cam- Sci. 3, 143(1989.

bridge, MA, 1977. [13] R. F. Fox, Phys. Rev. A33, 467 (1986.

[11] W. Horthemske and R. LefevelNoise-Induced Transitions [14] R. F. Fox, Phys. Rev. A34, 4525(1986).

061907-7



